Distribution Functions for Random Variables for Ensembles of Positive Hermitian Matrices

نویسنده

  • Estelle L. Basor
چکیده

Distribution functions for random variables that depend on a parameter are computed asymptotically for ensembles of positive Hermitian matrices. The inverse Fourier transform of the distribution is shown to be a Fredholm determinant of a certain operator that is an analogue of a Wiener-Hopf operator. The asymptotic formula shows that up to the terms of order o(1), the distributions are Gaussian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universality of the Local Spacing Distribution in Certain Ensembles of Hermitian Wigner Matrices

Abstract. Consider an N × N hermitian random matrix with independent entries, not necessarily Gaussian, a so called Wigner matrix. It has been conjectured that the local spacing distribution, i.e. the distribution of the distance between nearest neighbour eigenvalues in some part of the spectrum is, in the limit as N → ∞, the same as that of hermitian random matrices from GUE. We prove this con...

متن کامل

Large gap asymptotics at the hard edge for product random matrices and Muttalib-Borodin ensembles

We study the distribution of the smallest eigenvalue for certain classes of positive-definite Hermitian random matrices, in the limit where the size of the matrices becomes large. Their limit distributions can be expressed as Fredholm determinants of integral operators associated to kernels built out of Meijer G-functions or Wright’s generalized Bessel functions. They generalize in a natural wa...

متن کامل

A Classification Ofnon-hermitian Random Matrices

We present a classification of non-hermitian random matrices based on implementing commuting discrete symmetries. It contains 43 classes. This generalizes the classification of hermitian random matrices due to Altland-Zirnbauer and it also extends the Ginibre ensembles of nonhermitian matrices [1]. Random matrix theory originates from the work of Wigner and Dyson on random hamiltonians [2]. Sin...

متن کامل

Correlation Functions of Ensembles of Asymmetric Real Matrices

We give a closed form for the correlation functions of ensembles of asymmetric real matrices in terms of the Pfaffian of an antisymmetric matrix formed from a 2×2 matrix kernel associated to the ensemble. We also derive closed forms for the matrix kernel and correlation functions for Ginibre’s real ensemble. Difficulties arise in the study of ensembles of asymmetric random matrices which do not...

متن کامل

Phase transitions and random matrices

Phase transitions generically occur in random matrix models as the parameters in the joint probability distribution of the random variables are varied. They affect all main features of the theory and the interpretation of statistical models. In this paper a brief review of phase transitions in invariant ensembles is provided, with some comments to the singular values decomposition in complex no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997